Vegetation Ecology Lab / 植群生態研究室

Institute of Ecology and Evolutionary Biology, National Taiwan University

User Tools


Current research project

Changes in species- and community-level properties of forest vegetation along cloud and chronic-wind gradients in Taiwan

Ministry of Science and Technology, 106-2621-B-002-003-MY3; duration: 2017/08/01-2020/07/31

[ link to the project website ]

Taiwan as a subtropical island exposed to East-Asian monsoon system offers a unique opportunity to study vegetation along two peculiar stress gradients, cloud frequency and chronic-wind intensity. Frequent cloud or persistent strong winds have remarkable ecological effects on vegetation and require specific species adaptations. Cloud and monsoon forests thus represent unique vegetation types, hosting a number of endemic and relict species. In the near future, ongoing climate change is expected to modify both cloud frequency and chronic-wind intensity. To understand the impact of these changes on future diversity and species composition of cloud and monsoon forests and the ecological mechanisms behind has therefore not only high theoretical values, but also practical importance in conservation.

In this project, we will use patterns of forest vegetation along the gradient of cloud frequency and chronic-wind intensity in Taiwan as a model system to study mechanisms how species from species pool assemble to a local community. Apart from taxonomical approach (species census), we will also focus on plant functional traits, since these allow more mechanical and general explanation of environmental filtering. Four aims will be conducted on our model system:

  1. to analyse species- and community-level changes in leaf and wood functional trait properties along cloud and wind gradients,
  2. to analyse the pattern of taxonomic and functional diversity,
  3. to compile Ellenberg-like species indicator values along gradients of cloud frequency and chronic-wind intensity, and
  4. to identify cloud and wind specialists and their functional trait properties.

Additionally, we will invest considerable energy to sample the environment factors together with long-term microclimate monitoring, since detail knowledge of actual soil and microclimatic conditions are the keys to understanding how vegetation response to them.

Studies focused on cloud and wind gradients are rather rare, especially from subtropical regions, and many ecological questions remain unresolved. We believe that our project, applying modern methods from the toolbox of vegetation ecologists, can answer at least some of them. Such findings, apart from the general importance for theoretical ecology, have also a good potential for application in conservation, management and restoration of these habitats, which are threatened by land-use and climate changes.

Past research project

Community assembly along stress gradients: effect of cloud frequency and chronic-wind intensity on forest vegetation in Taiwan

Ministry of Science and Technology, 105-2621-B-002-004; duration: 2016/09/01-2017/07/31

This project focuses on changes in species and functional composition of forest vegetation along two strong environmental stress gradients, namely gradient of cloud frequency and chronic-wind intensity, to better understand underlying processes of community assembly. Peculiar stress effects of elevated cloud and chronic-wind intensity on vegetation are far less studied and understood compared to other factors like productivity, temperature, precipitation or soil properties, offering potential for new and interesting findings. Taiwan, as a subtropical island exposed to frequent cloud formations from the sea and nearly constant winds related to East-Asian monsoon system, offers a unique opportunity to study forest vegetation along both stress gradients.

To study different aspects of changes in species composition along the cloud frequency and the chronic-wind intensity gradients, we will employ a wide range of methods which are part of the modern toolbox of vegetation ecologists, at both the whole-community and individual-species level. At the whole-community level, we will focus on describing patterns of taxonomic and functional alpha, beta and gamma diversity. We will also deconstruct the species composition into the level of individual species and examine the degree of their habitat specialisation and ecological preferences, which will allow us to link ecological behaviour of individual species with their functional trait properties.

An important part of the project is extensive field campaign focused on collecting vegetation and trait data along the studied gradients. Vegetation sampling will focus on all vegetation layers accessible from ground together with a thorough record of local environmental conditions, including detailed soil sample analysis. Part of the sampling strategy is also the establishment of a set of small-scale permanent plots equipped with sensors for microclimatic measurements. These plots will serve as a long-term reference localities for future re-sampling with potential for further and more detail investigations and monitoring. Additionally, we will use data from other sources, including data which we have collected within previous projects in Taiwan, vegetation plots from National Vegetation Database of Taiwan, publicly available floristic data (e.g. www.gbif.org), and datasets (vegetation and trait) from Japan which we will gain from our co-operation with Japanese colleagues (namely Prof. Yasuhiro Kubota and his team).